
Web Security for Developers
Web Application Developers

Who am I?

I am Thejesh GN

- Currently Technical Architect at Peppo
- Previously NPTEL/IITM, Infosys etc

On a daily basis on I architect, design, develop web applications and services.

Why?

Intro

Why?

Why

Millions of Indians are going online for one reason or the other. It’s our
responsibility as web developers to make it safe for them.

Think about next billion internet users …..

Field is vast

The field of websecurity is vast. Everyday there are new things to learn and do.
Here I give you pointers to start with or to kick start your thinking process.

So

Where do we start?

Design

It needs to start form the design process. - What data you will collect?
- Is it really required?
- How do we minimize the data

collection?
- How do we keep it safe?
- How do we make interaction

safe?

12 Factor Development

Process is equally important. Sticking to
standards makes it easy to manage the
web project, in general keeps it secure and
maintainable.

https://12factor.net/

I. Codebase - One codebase tracked in revision control,
many deploys

II. Dependencies - Explicitly declare and isolate
dependencies

III. Config - Store config in the environment

IV. Backing services - Treat backing services as attached
resources

V. Build, release, run - Strictly separate build and run
stages

https://12factor.net/

12 Factor Development

VI. Processes - Execute the app as one or more
stateless processes

VII. Port binding - Export services via port
binding

VIII. Concurrency - Scale out via the process
model

IX. Disposability - Maximize robustness with fast
startup and graceful shutdown

X. Dev/prod parity - Keep development, staging,
and production as similar as possible

XI. Logs - Treat logs as event streams

XII. Admin processes - Run admin/management
tasks as one-off processes

Think about security

What's the biggest pitfalls that can be avoided?

What should I know as I am just starting?

- Learn from previous mistakes
- Learn from standards

OWSAP Top Ten

Globally recognized by developers as
the first step towards more secure
coding.

https://owasp.org/www-project-top-t
en/

- We can go one by one.
- We will understand what they

mean
- See how do we go about avoiding

making mistakes

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

How can this happen?

XKCD

https://xkcd.com/327/

OWSAP Top Ten

Injection - Injection flaws, such as SQL, NoSQL,
OS, and LDAP injection, occur when untrusted
data is sent to an interpreter as part of a
command or query. The attacker’s hostile data
can trick the interpreter into executing
unintended commands or accessing data
without proper authorization.

- Don’t use the user submitted form
attributes directly

- Use parameterized queries
- Use Object Relational Mapping (ORM)

Guess?

● 123456
● 123456789
● picture1
● password
● 12345678

● 111111
● 123123
● 12345
● 1234567890
● senha

OWSAP Top Ten

Broken Authentication - Application functions
related to authentication and session
management are often implemented incorrectly,
allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other
implementation flaws to assume other users’
identities temporarily or permanently.

- No default passwords
- Use two factor auth
- Suggest users to use strong password
- Suggest users to change password when

it gets leaked , using services like
https://haveibeenpwned.com/

- Hash passwords
- Use TLS (https)

https://haveibeenpwned.com/

OWSAP Top Ten

Sensitive Data Exposure. Many web
applications and APIs do not properly protect
sensitive data, such as financial, healthcare, and
PII. Attackers may steal or modify such weakly
protected data to conduct credit card fraud,
identity theft, or other crimes. Sensitive data
may be compromised without extra protection,
such as encryption at rest or in transit, and
requires special precautions when exchanged
with the browser.

- Classify data
- Apply different ACL
- Don’t store it if it’s not required. Like credit

card, birth date etc
- Encrypt all sensitive data at rest
- Hash passwords
- Use TLS (https)

XML External Entities (XXE). Many older or
poorly configured XML processors evaluate
external entity references within XML
documents. External entities can be used to
disclose internal files using the file URI handler,
internal file shares, internal port scanning,
remote code execution, and denial of service
attacks.

- Use less complex data formats such as
JSON

Broken Access Control. Restrictions on what
authenticated users are allowed to do are often
not properly enforced. Attackers can exploit
these flaws to access unauthorized functionality
and/or data, such as access other users’
accounts, view sensitive files, modify other
users’ data, change access rights, etc.

- ACL
- Time limited access even for real users
- Avoid world access to any kind of files
- Rate limit

Security Misconfiguration. Security
misconfiguration is the most commonly seen
issue. This is commonly a result of insecure
default configurations, incomplete or ad hoc
configurations, open cloud storage,
misconfigured HTTP headers, and verbose error
messages containing sensitive information. Not
only must all operating systems, frameworks,
libraries, and applications be securely
configured, but they must be patched/upgraded
in a timely fashion.

- Hardening
- Don’t use if not required
- Automated testing of the configuration

Cross-Site Scripting XSS. XSS flaws occur
whenever an application includes untrusted data
in a new web page without proper validation or
escaping, or updates an existing web page with
user-supplied data using a browser API that can
create HTML or JavaScript. XSS allows
attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface
web sites, or redirect the user to malicious sites.

- Use standard frameworks which by default
handles XSS, like RoR, Django etc

- Keep the frameworks updated

Insecure Deserialization. Insecure
deserialization often leads to remote code
execution. Even if deserialization flaws do not
result in remote code execution, they can be
used to perform attacks, including replay
attacks, injection attacks, and privilege
escalation attacks.

- Don’t accept serialized objects as much as
possible

- Accept only signed objects

- Details in a Cookie

Using Components with Known Vulnerabilities.
Components, such as libraries, frameworks, and
other software modules, run with the same
privileges as the application. If a vulnerable
component is exploited, such an attack can
facilitate serious data loss or server takeover.
Applications and APIs using components with
known vulnerabilities may undermine
application defenses and enable various attacks
and impacts.

CVE is a list of entries—each containing an
identification number, a description, and at least
one public reference—for publicly known
cybersecurity vulnerabilities.

NVD - The NVD is the U.S. government
repository of standards based vulnerability
management data.

https://cve.mitre.org/
https://nvd.nist.gov/

Insufficient Logging & Monitoring. Insufficient
logging and monitoring, coupled with missing or
ineffective integration with incident response,
allows attackers to further attack systems,
maintain persistence, pivot to more systems,
and tamper, extract, or destroy data. Most
breach studies show time to detect a breach is
over 200 days, typically detected by external
parties rather than internal processes or
monitoring.

- Someone should see the the logs
- Automated analysis and alerts
- Store the old logs for sufficient amount of

time
- Don’t log sensitive data

Tools

List of good

Tools at

Kali Linux

https://tools.kali.org/tools-listing

Information

● Open Web Application Security Project,
https://owasp.org

● Kali Linux and Tools -
https://tools.kali.org/tools-listing

● India CERT
https://www.cert-in.org.in/

● Have I been Pwned
https://haveibeenpwned.com/

● Common Vulnerabilities and Exposures
https://cve.mitre.org/

● Bleeping Computer
https://www.bleepingcomputer.com/news
/security/

● Kreb’s on Security
https://krebsonsecurity.com/about/

● Schneier on Security
https://www.schneier.com/blog/about/

● HackerOne
https://www.hackerone.com/

https://owasp.org
https://tools.kali.org/tools-listing
https://www.cert-in.org.in/
https://haveibeenpwned.com/
https://cve.mitre.org/
https://www.bleepingcomputer.com/news/security/
https://www.bleepingcomputer.com/news/security/
https://krebsonsecurity.com/about/
https://www.schneier.com/blog/about/
https://www.hackerone.com/

Thanks!
Thejesh GN
https://thejeshgn.com
i@thejeshgn.com

https://thejeshgn.com

